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Current microprocessors are
designed to execute instructions in parallel
and out of order. In general, superscalar
processors fetch instructions in order. After
the branch prediction logic determines
whether a branch is taken (or not) and its tar-
get address, the processor decodes the instruc-
tions and renames the register operands,
removing name dependences introduced by
the compiler. Because processors generally
have more physical than logical registers, mul-
tiple instructions with the same logical desti-
nation can be in flight simultaneously. The
renamed instructions then go into the issue
queue where they wait until their operands
are ready and their required resources are avail-
able. At the same time, instructions go into
the reorder buffer, where they remain until
they commit their results. When an instruc-
tion executes, the wakeup logic notifies depen-
dent instructions that the corresponding
operand is available. Finally, instructions com-
mit their results in program order.

This article focuses on the design of the
logic that stores the instructions waiting for
execution, as well as the logic associated with
identifying whether operands are ready and
selecting the instructions that start execution
every cycle. All these components are part of
the issue logic. Issue logic is one of the most

complex parts of superscalar processors, one
of the largest consumers of energy, and one of
the main sites of power density. Its design is
therefore critical for performance.

Researchers have used a variety of schemes
to implement the issue queue. In particular,
several recent proposals have attempted to
reduce the issue logic’s complexity and power.
To the best of our knowledge, this article is the
first attempt to perform a comprehensive and
thorough survey of the issue logic design space. 

Basic CAM-based approaches
One of the most common ways to imple-

ment the issue logic is based on content-
addressable memory (CAM) and RAM array
structures. These structures can store several
instructions, but generally fewer than the total
number of in-flight instructions. Each entry
contains an instruction that has not been issued
or has been issued speculatively but not yet val-
idated and thus might need to be reexecuted. 

In general, entries use RAM cells to store
operations, destination operands, and flags
indicating whether source operands are ready
while CAM cells store source operand iden-
tifiers—referred to here as tags. After the issue
logic selects an instruction for execution, it
broadcasts the instruction’s destination tag to
all the instructions in the issue queue. The
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wakeup logic compares each source tag in the
queue with the broadcast tag and, if there is a
match, marks the operand as ready. This
process is known as wakeup. A superscalar
processor can broadcast and compare multi-
ple tags in parallel. Figure 1 shows a block dia-
gram of the issue logic associated to one entry
of the issue queue. Whether the issue queue
stores operand values or just operand tags
affects the design, as Sima1 and others discuss.

The selection process identifies instructions
whose source operands are ready and whose
required resources are available, and then
issues them for execution. When more than
one instruction competes for the same
resource, the selection logic chooses one of
them according to some heuristic.2

Overall, the issue logic’s main source of com-
plexity and power dissipation is the many tag
comparisons it must perform every cycle.
Researchers have proposed several approaches
to improve the issue logic’s power efficiency.
We classify these approaches into two groups:

• static approaches, which use fixed struc-
tures, and 

• dynamic approaches, which dynamically
adapt some structures according to the
properties of the executed code. 

Orthogonally, researchers have proposed
several more efficient circuit designs, but they
don’t reduce the inherent complexity.3

Dynamic approaches
One approach to reducing the power dissi-

pation is based on disabling the wakeup logic
for CAM cells that are either empty or corre-
spond to operands that are already ready (that
is, have been woken up but the instruction
hasn’t been issued). This approach calls for
gating off each cell’s wakeup logic based on
the value of the ready and empty bits,4 but
only saves dynamic power.

A multibanked implementation of the issue
queue can also help reduce static power by
turning off entire banks when they are empty.
Figure 2 shows an adaptive-size issue queue
with resizing capabilities.

Albonesi analyzes the relationships between
issue queue size, latency, and performance5

while Buyuktosunoglu et al.,6 Ponomarev et
al.,7 and Dropsho et al.8 adjust issue queue size

to match the number of occupied entries.
More aggressive techniques reduce the issue
queue size even when the entries are occupied
if doing so doesn’t appear to significantly
degrade performance. Folegnani and
González propose a scheme that monitors the
instructions-per-cycle rate (IPC) from the
youngest part of the issue queue.4 Every cer-
tain number of cycles, this technique calls for
increasing the issue queue size by one bank.
If the number of committed instructions
issued from the youngest part of the queue is
below a given threshold, however, issue queue
size decreases by one bank. 

Abella and González propose a mechanism
that takes resizing decisions based on the time
that instructions spend in both the issue queue
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and the reorder buffer.9 If the ratio between
the time in the issue queue and the time in
the reorder buffer is below a given threshold,
the mechanism increases the reorder buffer
size. If it is above another threshold, the mech-
anism decreases it. The mechanism sets these
thresholds dynamically, making the mecha-
nism more aggressive when the reorder buffer
size is large. On the other hand, this scheme
resizes the issue queue based on the number of
cycles the dispatch stage stalls because of
unavailable issue queue entries.

Static approaches
Because implementing large out-of-order

issue queues at high clock rates is difficult,
some schemes combine small issue queues
with simpler structures. The issue logic dis-
patches only a subset of the in-flight instruc-
tions to the small and complex issue queues,
sending the rest to the simpler structures.
These simpler structures do not allow a full
out-of-order issue, however. In this type of
scheme, deciding which instructions go to
each structure is critical for performance. 

For instance, because instructions that
depend on a load that misses in cache will not
issue until the miss is serviced, Lebeck et al.10

propose a mechanism that places instructions
in a conventional issue queue, but, when a
load misses in cache, it moves all the instruc-
tions that depend directly or indirectly on the
load to a waiting buffer. After the cache ser-
vices the miss, the mechanism moves the
instructions back to the issue queue as the pro-

posed waiting buffer has no issue capabilities.
Figure 3a depicts this scheme.

Current superscalar processors speculative-
ly issue load-dependent instructions assum-
ing that the load will hit in cache; otherwise,
they pay a significant performance penalty.
Such processors usually keep these instruc-
tions in the issue queue until there is confir-
mation that the load hit in cache. If the load
misses, the instructions must be reissued. This
speculative technique obviously increases the
required number of issue queue entries. 

Moreshet and Bahar apply smart techniques
to move speculatively issued instructions to
another buffer, in response to load-hit pre-
dictions.11 Their mechanism moves such
instructions to the replay issue queue (see Fig-
ure 3b) once they are issued. If the load hits,
the mechanism removes the instructions; if it
misses, they are reissued through the replay
issue queue. The mechanism prioritizes the
replay issue queue for reissued instructions.
To simplify the selection logic, the mechanism
issues instructions from only one queue in a
given cycle. A load that misses in the cache
causes some cycles to elapse between miss
detection and servicing. Thus, you can imple-
ment the replay issue queue so that it dissi-
pates less power and is less complex than a
conventional queue, because its latency has a
reduced impact on performance. 

Another way to decide which instructions go
into the fast issue queue relies on estimating the
instructions’ criticality.12,13 Criticality is the num-
ber of cycles that the data path can delay an
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instruction without affecting the program’s exe-
cution time. No one has devised a feasible
method to compute instruction criticality in a
real program, so the proposed schemes use
heuristics to estimate the criticality.

If we can classify instructions according to
their criticality, we can implement the issue
logic with a small and fast CAM-based issue
queue for critical instructions, and a larger and
simpler slow issue queue that dissipates less
power for the rest. Brekelbaum et al.14 pro-
pose classifying instructions as dynamically
critical or noncritical. The instruction dis-
patch logic sends all the instructions to the
slow issue queue, as Figure 3c shows, and
every cycle the issue logic moves the oldest
nonready instructions in the slow issue queue
to the fast issue queue. Brekelbaum et al. base
their proposal on a two-cluster microarchi-
tecture with an issue queue in each cluster,
making the selection logic simpler. 

Another way to reduce the issue queue
complexity is based on the observation that
most instructions have one or none nonready
operands at dispatch time. Ernst and Austin
propose three issue queues: one without CAM
logic for instructions ready at dispatch, one
with CAM logic for instructions with only
one nonready operand at dispatch, and a third
with CAM logic for instructions with both
operands nonready at dispatch.15

Matrix-based approaches
Bit matrixes are an alternative way to imple-

ment the issue logic. The bit matrix has as many
rows as entries in the issue queue, and as many
columns as physical registers. Figure 4 shows a
matrix-based issue queue scheme. In the exam-
ple, it is assumed that the instructions go into
the issue queue in the same order as they appear,
and that there are only five registers.

When the issue logic receives an instruction
from the dispatch logic, this scheme calls for
clearing all the bits in that instruction’s row
except for those corresponding to its nonready
input physical registers. The wakeup process
clears the column corresponding to the newly
generated output physical register. An instruc-
tion is ready when all the bits in its row are zero. 

A CAM-based implementation holds the
tags, and the structure’s resulting complexity
is logarithmic with respect to the number of
physical registers. In contrast, a matrix-based

implementation holds bit vectors that result
in a linear complexity with respect to the num-
ber of physical registers. Weaknesses of a
CAM-based issue queue are the high number
of CAM cell ports required by the wakeup
process (because many results can be generat-
ed in a given cycle), and high power dissipa-
tion. The weaknesses of a matrix-based issue
queue also relate to size: The matrix can con-
tain many rows and columns, it can require
numerous decoders to select the column for
clearing during the wakeup process, and the
logic to detect when an instruction is ready can
be complex because it must check many bits.

Researchers have suggested improvements
to the matrix-based approach that would
reduce matrix complexity and size. Goshima
et al.16 distribute the matrix for integer, float-
ing-point, and load/store instructions and nar-
row the matrix based on their observation that
most instructions depend on instructions that
are close to each other in the reorder buffer.

Other researchers have used the matrix-based
approach to implement the selection logic.
Brown, Stark, and Patt propose using a matrix
to detect which operands are ready, which func-
tional units an instruction requires, and which
functional units are available.17 Their approach
allows pipelining the issue logic. 

Dynamic code prescheduling 
Issue logic schemes based on dynamic code

prescheduling offer another alternative to con-
ventional issue queues. Prescheduling-based
schemes attempt to schedule instructions in
an in-order buffer, ordering the instructions
according to their expected issue time. This
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scheme calculates instruction issue time based
on the latencies and expected issue times of
producer instructions (those instructions pro-
ducing results used by other instructions, con-
sumer instructions). These techniques are an
approximation of a runtime VLIW organiza-
tion. The scheme’s main advantage is elimi-
nation of the associative search needed for
wakeup.

Although estimating operation latency is
trivial for fixed-latency nonmemory instruc-
tions, it is not so easy for memory accesses.
The schemes we describe differ mainly in their
solutions for variable-latency instructions, and
in the way they deal with direct or indirect
consumers. 

Figure 5a depicts the basic structure of the
prescheduling proposals we discuss in this sec-
tion. The dispatch logic places the instruc-
tions in the issue queue, according to their
estimated issue time. Only the instructions at
the bottom of the queue (the issue line) are
candidates for execution. These schemes use
simplified wakeup and selection logic because
they consider the availability of both the
operands and the execution resources when
scheduling.

Researchers have proposed several tech-
niques for dealing with variable-latency oper-
ations. In the distance scheme,18 illustrated in
Figure 5b, an instruction buffer (the wait
buffer) holds all instructions dependent on an

unknown-latency load until its latency is
known. The instruction buffer then presched-
ules them in the issue queue with the rest of
the instructions.

Another alternative is to schedule the
instructions assuming a fixed latency (that is,
the latency of an instruction that hits in the
L1 cache) and move these instructions to an
alternative buffer if they arrive at the issue line
and are not ready for issue. The alternative
buffer can be an in-order or out-of-order issue
queue. Figure 5c depicts a block diagram of
this scheme, called the deterministic latency
scheme.19

Michaud and Seznec propose using the
associative buffer (the issue buffer) for all
instructions.20 The instruction buffer
preschedules instructions and then sends them
to the issue buffer before execution. Instruc-
tions remain in the issue buffer until they are
ready to execute. Figure 6a illustrates this
scheme.

Raasch et al. propose a prescheduling-based
scheme in which all instructions except those
that depend on a load that has missed in cache
advance toward the bottom of the queue every
cycle.21 The scheme adds a field in each entry
of the issue queue to identify dependence
chains. All instructions that depend on a load
that misses in cache can continue advancing
so they reach the bottom of the queue just in
time to consume the loaded data. Because of
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implementation constraints, this scheme par-
titions the issue queue into several segments.
Each segment stores instructions that the
scheme estimates can issue after a given range
of cycles. Figure 6b shows this scheme.

Grossman proposes tagging each instruction
at compile time with the delay of its source
operands according to its producers’ latencies.22

At runtime, the instructions go into a func-
tional-unit-specific issue queue; the dispatch
logic assigns an issue slot according to each
instruction’s latency tag, as Figure 6c shows. 

Dependence tracking
The last category of schemes reduces issue

logic complexity through mechanisms that
track dependences among instructions; such
schemes also link producer and consumer
instructions. By tracking this explicit rela-
tionship, these schemes avoid (or reduce) the
associative lookup inherent in conventional
issue logic. Most of these schemes exploit the
fact that results generated by an instruction
typically have just one consumer.19 Thus,
propagating the results only to the consumers
is much more efficient than broadcasting the
results to all instructions in the queue.

In these mechanisms, a direct-access RAM

structure replaces the associa-
tive logic required by conven-
tional schemes. All these
mechanisms use a table to
track dependences, keeping
instructions in a separate struc-
ture (the dependence struc-
ture). When the instructions
are ready to execute, the
dependence structure forwards
them to the issue logic. Figure
7 gives a block diagram of a
queue for dependence-track-
ing schemes.

Two classes of alternatives
differ as to where they keep
instructions before issue: in
the dependence structure18,19,23

or in a separate structure.24,25

A physical-register identifi-
er indexes the dependence
structure. For the simplest
schemes, each entry keeps just
one consumer instruction for
the corresponding register, reducing the
amount of parallelism the issue logic can
exploit. Several approaches attempt to relax
this constraint. 
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Huang, Renau, and Torrellas introduce
extra bits in the instruction window that let
producers have more than one consumer.24

Because basic dependence-based schemes can-
not implement direct wakeup when an
instruction has more than one consumer, this
proposed approach allows a limited associa-
tive search to wake up the consumers.

Önder and Gupta23 extend the links between
producer and consumer by allowing a link from
consumer to consumer (assuming they have
the same producer). This extra link implements
the relationship between one producer and
more than one consumer, preventing the issue
logic from stalling when one instruction is the
second consumer and limitations in the basic
structure prevent its dispatch.

Canal and González introduce associativi-
ty in the dependence structure, permitting the
connection of producers with more than one
consumer.18 In later work, the authors extend
the mechanism with an extra associative buffer
that holds instructions untrackable through a
dependence-based structure.19

Sato, Nakamura, and Arita introduce a
scoreboarding mechanism that allows the
issue logic to consider for issue consumers
instructions that the direct-search mechanism
cannot track.25 These instructions continu-
ously monitor the register file for operand
availability. In other words, this approach han-
dles instructions conventionally, as though
they were part of an associative buffer.

Palacharla, Jouppi, and Smith propose a
somewhat different, but related, approach.
This scheme distributes the issue logic into
several first-in first-out (FIFO) queues.26 The
dispatch logic forwards each instruction to the
FIFO queue in which the last instruction is
the producer of a source operand; if no FIFO
queue meets this condition, the instruction
goes to an empty queue. If no empty queue is
available, the dispatch stage stalls. Placing
instructions in this way guarantees that the
instructions in a given FIFO queue execute
sequentially; thus, this scheme monitors only
the youngest instruction in each queue for
potential issue.

Each of the schemes discussed here has
advantages and drawbacks, and thus the

best solution will depend on the particular
application scenario. Because future processors

might require even larger instruction windows
and faster clock rates, issue logic design will
continue to be an interesting area of research.

Finally, leakage currents will become a sig-
nificant source of energy consumption and
power dissipation for the forthcoming genera-
tions of processors. Most of the proposed tech-
niques can help reduce leakage because they
shut down the unused portions of hardware.
Still, techniques specifically targeted at reduc-
ing leakage could be more appropriate. MICRO
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